
Chapter 18
Extracting Data from WSNs:
A Data-Oriented Approach

Fabio A. Schreiber, Romolo Camplani, and Guido Rota

Abstract. The PerLa language and the related middleware have been developed to
ease the task of querying heterogeneous devices in pervasive systems. This paper
presents, in a detailed way, some of the main features of the PerLa language by show-
ing how it can be applied to the wine production process.

18.1 Introduction

The wine production process requires the cooperation of many different ”technolo-
gies” and expertises, which work in a pipelined manner: from the ”wine design”,
performed by the oenologist, of the blending and timing for a quality wine, to the
grape cultivation in the vineyard, up to the wine delivery to the consumer table, as
discussed in chapter 17 and chapter 21.

As we can see in Figure 18.1, sensors and portable computing devices play an
important role in each of the process steps; however the different environments and
scopes require very different devices to gather and send data to the production control
system, each with its own format and protocol.

Many different data are to be collected from sensors in the vineyard in order to
control both the grape ripening conditions and the possible parasites attacks or on
the barrels to control the wine ageing; even more differences among the information
needed by the vineyard workers on their PDAs and on the RFID tags to be attached

Fabio A. Schreiber · Romolo Camplani
Politecnico di Milano, Dipartimento di Elettronica e Informazione, 34/5
Ponzio, 20133 Milano, Italy
e-mail: {schreiber,camplani}@elet.polimi.it
Guido Rota
Politecnico di Milano, Dipartimento di Elettronica e Informazione, 34/5 Ponzio,
20133 Milano, Italy
e-mail: guido.rota@gmail.com

G. Anastasi et al. (Eds.): Networked Enterprises, LNCS 7200, pp. 357–373, 2012.
© Springer-Verlag Berlin Heidelberg 2012

358 F.A. Schreiber, R. Camplani, and G. Rota

Fig. 18.1 The wine production and delivery process

to the pallets or to each bottle. In this chapter we outline the winemaking monitor-
ing process (see Figure 18.2), and we shall discuss how we overcome the challenges
raised by the different sensing devices that support this process.

In this chapter we introduce PerLa - a language and middleware for data manage-
ment in pervasive systems - by showing how its features can be applied to the winery
scenario. In section 18.2 we introduce the monitoring requirements. In section 18.3,
the main feature of the PerLa language are introduced by means of set of queries
relevant to the wine production monitoring processes, while in section 18.3 a more
formal presentation of the language is introduced.

18.2 The Vinification Monitoring Process

The task of controlling the vinification process begins in the vineyard. Humidity and
temperature have a strong influence on the final quality of the wine, as they directly in-
fluence the grape’s maturation process. Keeping these parameters under strict control
is therefore an activity of paramount importance. The monitoring system, by means
of sensors deployed in the vineyard, is able to provide continuous readings of humid-
ity and temperature, as well as fire warning alarms should one of the parameters of
interest exceed the ranges considered safe by the oenologists. Furthermore, to make
full use of the resources available in the field, any relevant data sensed by the PDAs

18 Extracting Data from WSNs: A Data-Oriented Approach 359

provided to the vinery workers is automatically integrated with the readings coming
from the stationary sensor nodes.

Fig. 18.2 Wine production process monitoring - Workflow

The wine production monitoring process doesn’t stop in the vineyard. Just after the
grapes are harvested, and the fresh wine is made, the ageing process begins. The age
and the peculiar character of the wooden barrels, the humidity of the ageing cellar,
and unwanted temperature spikes are just few of the several factors involved in the
development of wine flavour. The oenologists are required to constantly monitor all
these aspects throughout the entire ageing period, to ensure the correct environmental
conditions needed to mature the desired wine savour are maintained. The winemaking
monitoring system is employed to chronicle the cellars where a wine barrel is stored
during the ageing period. To this purpose, RFID tags are to be attached on every
barrel, and the RFID Readers installed in the cellars will be used to trace the different
locations where the wine is stored. This information can then be crossed with the
data sensed by the cellar’s legacy environmental control systems to obtain a complete
monitoring of the wine maturation process.

To provide a detailed account of the entire production activity, it is essential to
monitor the transportation phase as well. Since the flavour of wine can be easily spoilt
by a sudden change of temperature, every pallet of bottles is to be provided with a
thermal sensor during shipment. The wine will then be marked accordingly in the
eventuality of an overheating. Moreover, by means of GPS receivers installed on the

360 F.A. Schreiber, R. Camplani, and G. Rota

trucks, the monitoring system can assess if the current situation requires additional
surveillance (e.g. when the payload is stationary in a sunny area), and ensures that
the temperature is sampled with adequate frequency.

All the information gathered during the vinification is stored in a database for fu-
ture evaluation. The complete account of the production process of a bottle of wine,
made available to winemakers and the final consumers as well, can be retrieved by
means of the identification code stored in the RFID tag located under the label of
each bottle.

In the remainder of this chapter we will briefly outline the architecture of the afore-
mentioned database and provide a short description of PerLa language and middle-
ware, the system employed to collect data from the sensing devices. The decision
to adopt PerLa is the results of a thorough analysis of current state of the art tech-
nologies for Pervasive Systems and Wireless Sensor Networks [1]. TinyDB [2], DNS
[3], Cougar [4], Maté [5], Impala [6], Sina [7], DsWare [8], MaD-WiSe [9], Kairos
[10], GSN [11], SWORD [12] and PerLa were evaluated to determine which one
met the requirements of the winemaking monitoring system. PerLa has been cho-
sen by virtue of its SQL-like declarative query language and Plug & Play node ad-
dition system, which greatly simplified the interactions with the sensing network
devices.

18.3 PerLa: System Description

While in chapter 17 a service oriented approach is presented, PerLa is a language and
a data processing middleware for Pervasive Systems, developed to mask the idiosyn-
crasies of the nodes employed in complex sensing networks based on the Database
approach. The pervasive systems, exposed as a Database by PerLa, can be queried
through a declarative language with SQL-like syntax. This feature allows application
developers to release themselves from the burden of managing the peculiar behaviour
of different sensing devices. Collecting data from a pervasive system abstracted by
PerLa can be as easy as writing a typical database query. Moreover, the PerLa lan-
guage [13][14][16] is composed of special syntactic statements designed to fully ex-
ploit the capabilities typical of pervasive sensing networks. Various examples of these
statements will follow in the remainder of this chapter.

All nodes present in the sensing network are abstracted by the PerLa middleware as
proxies called FPC (Functionality Proxy Component). These components have com-
mon and homogeneous interfaces, and are used by PerLa queries to access the data
gathered from the network nodes. No knowledge of the node’s hardware and com-
putational characteristics is needed to perform a PerLa query. Moreover, by means
of the FPC abstraction, the language is not tied to any particular type of sensing
device.

18 Extracting Data from WSNs: A Data-Oriented Approach 361

PerLa support for pervasive systems extends to node developers as well. The ad-
dition of new sensing devices in an existing network is facilitated by a Plug & Play
connection system, i.e. a runtime factory that generates all the software components
needed to query new sensor nodes. The information required to automatically as-
semble a device driver are stored in an XML file drafted by the node developer. This
file, dubbed Device Descriptor, details all the node’s characteristics in terms of data
structures, protocols of communication, computational capabilities, and behavioural
patterns. The descriptor can be sent by the device itself upon startup or directly in-
jected by the user (e.g. for RFIDs or other dumb devices). All running queries will
automatically make use of every new node added in the system.

Results generated by PerLa queries are automatically stored in a relational
database. This features allows third party software (see chapter 13) to easily access
the data collected from the sensing network (see chapter 15 and 16).

PerLa middleware is being continuously updated. At the present time, a series of
ongoing projects is aiming at expanding the system by adding an intelligent power
management, new context-aware query statements and context-managementfeatures
[15][17] and a virtualization layer to fully exploit the computational capabilities of
the network nodes.

18.3.1 PerLa: Integration in the Winemaking Monitoring Process

As the reader may have already realized from the introductory sections of this book,
the wine production monitoring system makes use of data coming from a wide variety
of heterogeneous sensing devices. RFID readers and tags, PDAs, legacy environmen-
tal control systems and ad-hoc sensors are just a few examples of the different nodes
that support the winemaking control system. Developing a custom-made application
merely to administer and query scores of heterogeneous sensing devices would not
be an effective solution, since even the slightest change in the data acquisition net-
work would surely entail a substantial rewrite of the system. Moreover, the resulting
product could not be reused in any other domain of application.

All these considerations led to adopt PerLa as a middleware to decouple the core
monitoring application from the Pervasive System used as a data source. The infor-
mation retrieved from the sensing network is stored in the relational database de-
scribed in chapter 9, and then analysed and processed by the wine production con-
trol system. A simplified version of this database schema is shown in Figure 18.3.
While a detailed description of the PerLa language and its EBNF formal description
can be found in [14], in the remainder of this section we shall describe the PerLa
queries used for the monitoring process, and we shall use them to introduce the se-
mantics of the PerLa language and the major software components of the PerLa
middleware.

362 F.A. Schreiber, R. Camplani, and G. Rota

Vineyard

Vineyard
Sec�on

Wine Barrel

Bo�leWine Shop

Overhea�ng Pallet

Vineyard Monitoring

Bottle Monitoring

Transport Monitoring

Wine ID

Variety Year

NameVineyard ID

Zone ID

Barrel ID Cellar

Location

Grapes Variety

Temperature Humidity

Shop ID Name

Bottle arrival date

Wine
arrival date

Bottle ID

Pallet ID

Date Temperature

Barrel Monitoring

Duration

Location

Fig. 18.3 Wine production process monitoring - Database

Fig. 18.4 Vineyard monitoring query

18.3.1.1 Query A: Vineyard Monitoring

The purpose of this query is simple: collect temperature and humidity from all the
nodes located in the vineyard.

The first 2 lines of Figure 18.4 contain the declaration of an OUTPUT STREAM,
one of the two data structures available in PerLa. A STREAM is fundamentally an

18 Extracting Data from WSNs: A Data-Oriented Approach 363

unbounded table, designed to be used mostly as an output data structure. As can be
seen in the second line of Figure 18.4, every record of a STREAM is composed of a
fixed set of fields, each of which has an identifier (nodeID, temperature, . . .) and a
type (ID, FLOAT, . . .). In addition to the fields declared by the user, every record is
provided with a native TIMESTAMP field.

The keyword AS (Figure 18.4, second line) is then used as a shorthand to indicate
that the results of the query have to be stored in the previously declared data structure.

At the third row, the body of the query begins. PerLa supports two different types
of queries:

• Low Level Queries: define the behaviour of a single sensing or actuation device.
Low Level Queries allow the user to:

– Set the sampling mode of the nodes
– Execute SQL operations on the data sampled from the Pervasive System,

(e.g. filtering, aggregations, . . .).

• High Level Queries: perform SQL operations on STREAMS generated by Low
Level Queries or other High Level Queries. Since the data extracted from the
sensor nodes is stored in a relational database, the winemaking monitoring ap-
plication does not use this type of queries extensively. An example of a High
Level query is to be given in Fig.18.8.

Low Level Queries and High Level Queries are respectively identified by the key-
words LOW and HIGH.

The EVERY clause (fourth line) specifies the execution condition of the Low Level
SELECT statement. In this case, an event-based approach is chosen using the keyword
ONE. As a result, the selection is scheduled to run every time a sample is gathered
from the device. The EVERY clause, in addition to the event-based behaviour (EVERY
ONE, EVERY 2 SAMPLES, . . .), supports a time-based semantics as well (EVERY 20
m, EVERY 2 h, . . .).

The selection clause (Figure 18.4, line 5) is then introduced by the keyword SE-
LECT. The semantics of this clause is identical to its SQL counterpart, with just one
difference: the data source of PerLa queries is not a database table, but a group of
sensing devices instead. Depending on the peculiar characteristics of the nodes that
compose the sensing network, same types of information may be collected by means
of different techniques. The location of the devices employed in the vineyard mon-
itoring, for example, can either be read from memory (if the node is known to be
stationary) or sampled from a GPS receiver (if the device is a PDA assigned to a field
worker). Despite these differences, the same selection statement (SELECT locationX
FLOAT, locationY FLOAT) correctly retrieves the location from both devices.

The SAMPLING keyword (Figure 18.4, line 6) defines which sampling mode is
required to collect the data requested in the SELECT clause. Two different semantics
are available:

• Time based: the sampling frequency is set explicitly by the user. This mode is
chosen by means of the keyword EVERY, followed by the desired time interval
(e.g. 1 m, 10 m, 3 h, . . .).

364 F.A. Schreiber, R. Camplani, and G. Rota

• Event based: the sampling operation is performed upon the occurrence of an
event. The event based semantics, further discussed in one of the following
queries, is activated with the keyword ON EVENT followed by the list of events
chosen to trigger the sampling.

In the instance of Figure 18.4, this clause simply specifies a sampling interval of 1
minute.

PerLa queries may also be used to describe other aspects of the data gathering
process, empowering the user with the ability to greatly influence the operational
behaviour of the single devices. It is worth mentioning that no knowledge about the
hardware and software features of the sensing nodes is required when writing PerLa
queries, even when dealing with clauses that govern the lowest layers of a pervasive
system. We will delve further into this topic while describing the forthcoming queries.

The EXECUTE IF clause (Figure 18.4, line 8) is used to determine, by means of a
logical expression, the set of devices on which the low level query is to be deployed.
The statement of Figure 18.4 is set to be executed on all nodes located in the vineyard
equipped with at least a temperature sensor. The vigilant reader may have noted that
the selection clause demands a humidity reading, whereas the EXECUTE IF clause
doesn’t require the presence of the corresponding sensor. Whenever this query is ex-
ecuted on a device lacking the humidity transducer, a NULL value will be returned
instead of the missing reading.

The REFRESH clause (line 9) forces the EXECUTE IF condition to be reassessed
every 10 minutes, in order to update the list of devices capable of running the query.
This allows the PDAs employed by the winemakers to be included when they access
the vineyard. Should the REFRESH clause be omitted, the EXECUTE IF condition
would be evaluated only once.

18.3.1.2 Query B: Frost Alarm

The second query, shown in Figure 18.5, is designed to monitor the environmental
conditions that may induce frost in the vineyard. This phenomenon is known to show
itself when temperature is near 0ºC and the amount of water vapour in the air is signif-
icantly high. In this implementation of the query, the frost alarm is raised by adding
a record in the OUTPUT STREAM whenever the temperature decreases below 5ºC
and the humidity in the air is over 75%.

Fig. 18.5 Frost alarm

18 Extracting Data from WSNs: A Data-Oriented Approach 365

This particular behaviour is enforced by means of the selection statement of a Low
Level Query (Figure 18.5, lines 4 and 5). The HAVING clause, which, in contrast with
standard SQL language, works both for aggregates and single values as well, filters
the data sampled by the network nodes and discards all the inappropriate records. The
predicate used by this selection clause imposes a condition on both temperature and
humidity readings, which evaluates true only when the vineyard is at risk of freezing.

Note that the frost condition is evaluated on the average of the last 10 minutes
samples in order to remove incidental noise. This is accomplished by using PerLa ag-
gregate operators. Differently from their SQL counterpart, these operators have two
parameters: the value on which the operation has to be carried out and the number of
samples that are to be used to compute the aggregate. This difference from standard
SQL aggregates is due to the peculiar nature of the input data sources. The informa-
tion collected from pervasive system nodes is a continuous stream of data. Specifying
to which extent the aggregation operation should be performed is therefore manda-
tory, otherwise the computation would never terminate due to the potentially infinite
data set. The number of samples on which the aggregate is calculated can be speci-
fied either as an explicit number (e.g. AVG(temperature, 25 SAMPLES)) or as a time
duration (e.g. AVG(temperature, 10 m)).

Since air humidity is fundamental to forecast the frost phenomenon, the EXECUTE
IF clause (Figure 18.5, line 8) mandates the presence of the corresponding transducer
on all the nodes involved in the execution of this query. By contrast, this sensor was
tagged as optional in the first query (Figure 18.4, line 8).

18.3.1.3 Query C: Devices with Low Battery

The state of a sensing network managed by PerLa is abstracted as a set of records
collected from a group of potentially virtual sensors. Therefore, non functional in-
formation regarding the network nodes such as battery status, processor speed, soft-
ware or hardware revision, etc. can be accessed by means of a plain PerLa query. No
special statements or clauses are needed for this purpose.

The instance of Figure 18.6 exploit this feature to list the identifiers (IDs) that
belong to wireless devices with low residual battery charge.

Fig. 18.6 Low Powered Devices

In contrast with the examples shown up to this point, the query of Figure 18.6
employs the SAMPLING clause to determine whether a node’s battery is nearing

366 F.A. Schreiber, R. Camplani, and G. Rota

exhaustion (line 7, WHERE powerLevel < 0.15). Previous examples (e.g. Figure
18.5) relied entirely on the SELECT ... HAVING syntax to filter records; the usage
of the SAMPLING ... WHERE construct produces the following effects:

• the discarded records are not processed by the SELECT statement
• the discarded records do not trigger the execution of the SELECT statement when

the execution condition is event based (e.g. EVERY ONE, EVERY 2 SAMPLES,
. . .)
• the records that does not fulfill the WHERE criterion are discarded by the sensor

node itself; no data is transmitted over the network.

It is worth mentioning that the SAMPLING ... WHERE and SELECT ... HAVING
constructs are not interchangeable, even though most trivial PerLa queries can be
written using either of them. The HAVING clause is meant to be used when the fil-
tering condition involves aggregate operations or other functions that require two or
more records to be computed. The WHERE clause is a better choice if the filtering
operation can be performed evaluating a single record. The latter approach can lead to
a significant performance improvement, since the discarded values are not processed
by the SELECT statement. Therefore, the WHERE clause should be preferred over
the HAVING one whenever possible.

Fig. 18.7 Number of low powered devices

The number of devices that need a battery replacement may be computed with the
query of Figure 18.7. The statement, whose syntax closely mirrors standard SQL,
is a simple High Level Query. Like the foregoing Low Level Queries, the selection
statement activation condition is expressed via the EVERY clause. In this instance,
the query is run every 24 hours (Figure 18.7, line 3). The only operation required to
reckon the number of devices in need of a new battery is a simple COUNT(*). The
raw data regarding the battery conditions of the network nodes are retrieved from the
LowPoweredDevice STREAM, which is constantly updated by the query shown in
Figure 18.6.

One of the major differences among SQL queries and PerLa High Level Queries
lies in the FROM clause. As can be seen at line 5 of Figure 18.7, the input STREAM
name is complemented with a duration (namely Window Size). This information de-
termines how many records are to be processed whenever the SELECT statement is
activated. The Window Size can be specified either as a time interval or a number of
records.

18 Extracting Data from WSNs: A Data-Oriented Approach 367

18.3.1.4 Query D: Pallets Out of Temperature

High temperatures can yield devastating effects on wine flavour. Even if protracted for
a short amount of time, the exposure to a warm environment may irreversibly change
the product’s typical character and savour. These alterations are to be prevented at all
costs to avoid wine depreciation and to increase customer satisfaction. To this pur-
pose, the query in Figure 18.8 is employed to signal every thermal shock experienced
by the wine during shipment. Considering that the thermal sensors employed in this
application are powered by an autonomous battery, this query has been designed to
minimize unnecessary data communications.

Fig. 18.8 Pallets out of temperature

The shipment monitoring system is composed of these main elements:

• A temperature sensor node with low-range radio transmitter installed on every
pallet of wine
• A GPS receiver installed on every truck of the shipment fleet
• A Base Station, i.e. a special network node used to relay the data from GPS and

temperature sensors to the monitoring headquarters. Every truck is provided with
a single base station.
• The PerLa query of Figure 18.8

Since under normal circumstances the trailer’s air cooling system is considered ade-
quate to safeguard the integrity of the wine, the continuous temperature monitoring
is activated only when the shipment travels across a critical location. This behaviour
is achieved through the PILOT JOIN execution condition.

With PILOT JOIN, the decision to include a node in the execution of a query is
based on the content of a support data structure. Therefore, the output of any sensing
device can be employed to trigger the activation of a query on other network nodes.
By contrast, the EXECUTE IF only allows the use of attributes gathered from a single
device to determine whether that node could take part in a query or not.

The example in Figure 18.8 makes use of the PILOT JOIN clause to activate a
monitoring query on those pallets that are traversing a critical location. To obtain this

368 F.A. Schreiber, R. Camplani, and G. Rota

behaviour, a first subquery (lines 1 to 7) is run to gather the IDs of the Base Stations
installed on trucks considered at risk of overheating. Then, the second subquery (lines
8 to 14) is used to collect the identifier of the pallets whose temperature exceeded the
safe threshold (line 13). The PILOT JOIN (Figure 18.8, line 14) ensures that the scope
of the monitoring query is limited to the bottles inside a critical location.

The first subquery, in contrast with all the preceding examples, is used to insert
records in a SNAPSHOT table (Figure 18.8, first line). This type of data structure
is intended to hold data for a limited time only, known as SNAPSHOT DURATION.
Upon expiration, the SNAPSHOT is purged and filled with new records. A PILOT
JOIN execution condition, if used in combination with a SNAPSHOT table, is evalu-
ated when the content of the data structure is refreshed (conditional semantics). Were
the same PILOT JOIN used with a STREAM, the evaluation of the execution condi-
tion would be triggered by every new record added in the data structure (event based
semantics).

18.3.1.5 Query E: Cellar Monitoring

The wine monitoring process does not stop once the product is delivered. To ensure
that flavour and aroma are preserved, the wine has to be stored in a controlled en-
vironment, where unexpected variations in temperature, humidity or light are kept
under strict control. All wine cellars must therefore provide some sort of controlled
environment, either by nature or by means of a climate control systems. To complete
the chain of trust between the winemaker and the final buyer, the wine dealers must
be able to provide the list of cellars where every bottle in their catalogue has been
stored. The query of (Figure 18.9) is specifically designed for this purpose.

Fig. 18.9 Cellar monitoring

Since every bottle is labelled with an RFID, the content of every wine cellar can
be easily monitored by installing a tag reader at the entrance door. The instance in
Figure 18.9 is then executed to maintain a log with the IDs of all the wine bottles that
crossed the threshold of the storing room.

In this situation, a continuous monitoring of the RFID reader would not make
sense. Hence the decision to use an event based sampling technique. As explained in
the description of the first query, the event based sampling mode triggers a reading
from a sensing device upon the occurrence of one or more events. In the query of
Figure 18.9, the sampling operation is set to be performed whenever the RFID tag

18 Extracting Data from WSNs: A Data-Oriented Approach 369

of a wine bottle is sensed by a new RFID reader (i.e. the bottle has been moved to
a new cellar). The WHERE clause of line 7 is additionally specified to monitor one
cellar at a time.

The information produced by this query, when crossed with the data collected by
the cellar’s legacy environmental control system, provides a comprehensive chron-
icle of the wine storage phase. The final consumer can exploit this information to
determine the exact conditions endured by the wine bottle during its entire lifetime.

It is worth mentioning that this query can be easily adapted to monitor the wine
barrels introduced in the ageing cellars.

18.4 PerLa Language Digest

We conclude this chapter with a brief digest on the PerLa language, intended to give
the reader a broad vision over the most important language statements and features
[14].

18.4.1 Data Definition

PerLa language provides the user with two distinct table types:

• STREAM: a table composed of an unbounded number of records. STREAMS
represent PerLa’s main data structure.
• SNAPSHOT: a set of records generated during a specified time period (SNAP-

SHOT DURATION). When the given duration expires, the SNAPSHOT is cleared
and filled with new records.

PerLa Data Definition statements are introduced by the keyword CREATE, followed
by the identifier of the desired data structure. Both STREAMs and SNAPSHOTs are a
homogeneous collection of records. The record structure declaration, defined as a list
of identifiers and data types, is therefore mandatory. PerLa tables can be additionally
tagged with the keyword OUTPUT if their content is to be shown to the user who
submitted the query.

A STREAM or SNAPSHOT definition is usually followed by a PerLa query, intro-
duced via the keyword AS, which is executed to generate the data structure content.

18.4.2 Low Level Queries

Low Level Queries are used to access the data produced by the sensing network. By
means of this type of statement, PerLa users can define which information is to be
gathered from the pervasive system , set the sampling mode of the sensing devices,
select the network nodes on which execute the query, filter data and perform simple
SQL operations. Low Level Queries are identified by the keyword LOW.

370 F.A. Schreiber, R. Camplani, and G. Rota

Sampling

The SAMPLING clause is used to specify the behaviour of every single sensing de-
vice. Two different semantics are available:

• Time based: the sampling operation is performed periodically, following user in-
dications. The sampling period can be specified as a fixed duration (SAMPLING
EVERY 3 m), as a numeric expression (SAMPLING EVERY (1000 / temperature)
s)) or as a conditional statement (SAMPLING IF powerLevel > 50 EVERY 1 s
ELSE EVERY 15 s REFRESH EVERY 1 h).
• Event based: the sampling operation is triggered by the occurrence of one or

more events (e.g. SAMPLING ON EVENT highTemperature, lowTemperature).

The SAMPLING clause may also be employed to perform basic filtering operations
(SAMPLE EVERY 1 m WHERE temperature > 50).

Data Managing

PerLa Low Level Queries are provided with a Data Managing Section, introduced by
the SELECT keyword, through which users define the exact output of the query. Le-
git SELECT statements can make use of constants (SELECT 3, ”Temperature”), data
sampled from sensors (SELECT temperature, humidity, powerLevel), numerical ex-
pressions (SELECT 0.55∗ (f arenheitTemp−32))or aggregate operations (SELECT
timestamp, AVG(temperature, 10 m)). Two different activation semantics are avail-
able:

• Time based: query results are computed periodically (EVERY 10 m SELECT
. . .)
• Event based: query results are computed when a determined number of records

is available (EVERY 5 SAMPLES SELECT . . .)

SELECT statements can be complemented with a HAVING clause to specify ad-
vanced filtering conditions.

Execution Conditions

This optional section is used to define which sensing devices can partake in executing
a query. Execution conditions are expressed through the following clauses:

• EXECUTE IF: allows the definition of a simple predicate, which is evaluated to
determine whether a node can take part in a query or not. Execution conditions
set via the EXECUTE IF clause are reassessed periodically if the REFRESH key-
word is specified.
• PILOT JOIN: provides the user with the ability to declare sophisticated execu-

tion conditions based on a support query.

18 Extracting Data from WSNs: A Data-Oriented Approach 371

Termination Conditions

The optional TERMINATE AFTER clause may be employed to declare the lifetime
of a Low Level Query. Queries can be set to stop at the end a specified time period
(e.g. TERMINATE AFTER 1 h) or after the selection statement has been executed an
established number of times (e.g. TERMINATE AFTER 10 SELECTIONS).

18.4.3 High Level Queries

High Level Queries are designed to perform data manipulation operations over
STREAM tables. Syntax and semantics of this type of statement is closely related
to standard SQL. There are, however, two major differences:

• Activation conditions: the High Level selection statements can be activated peri-
odically (EVERY 10 m) or by the insertion of a new record in a STREAM (EVERY
3 SAMPLES IN <StreamName>)
• FROM clause: when using STREAM tables, the user is required to define a du-

ration window that identifies how many records are processed during selection

High Level Queries are identified by the keyword HIGH.

18.4.4 Actuation Queries

Actuation Queries are employed to set parameters on network nodes. This type of
statement is mainly used to drive mechanical and electronic actuators or to mod-
ify software variables. Actuation Queries’ syntax is composed of the keyword SET,
which introduces the parameter to set, and the keyword ON, used to list the nodes
interested by the query.

18.5 Final Remarks

The PerLa middleware has been adopted in a prototypical deployment for vineyard
monitoring. In particular, we deployed half a dozen nodes, each one composed by a
ZigBee-compliant Jennic JN39R131 mote and endowed with humidity, temperature
and luminosity sensors. For the tests, we fixed the sampling rate to 1Hz (which is
considerably high for the chosen scenario).

Despite the considered testbed is a significant case study for our system, further
improvements may be only obtained by studying the scalability of the entire systems.
In particular, we want to focus on the scalability both in terms of number of nodes
per network and of number of served networks.

372 F.A. Schreiber, R. Camplani, and G. Rota

Acknowledgements. We thankfully acknowledge the work of Ing. Marco Fortunato and Ing.
Marco Marelli, who pioneered the design and development of PerLa, and the contribution of
Ing. Diego Viganò, who assisted us in the development of the system.

References

1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor networks: a
survey. IEEE Communications Magazine 40(8), 102–114 (2002)

2. Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: TinyDB: an acquisitional query
processing system for sensor networks. ACM Trans. Database Syst. 30(1), 122–173
(2005)

3. Chu, D., Popa, L., Tavakoli, A., Hellerstein, J.M., Levis, P., Shenker, S., Stoica, I.: The
design and implementation of a declarative sensor network system. In: SenSys 2007:
Proceedings of the 5th International Conference on Embedded Networked Sensor Sys-
tems, pp. 175–188. ACM, New York (2007)

4. Yao, Y., Gehrke, J.: The cougar approach to in-network query processing in sensor net-
works. SIGMOD Rec. 31(3), 9–18 (2002)

5. Levis, P., Culler, D.: Maté: a tiny virtual machine for sensor networks. SIGPLAN
Not. 37(10), 85–95 (2002)

6. Liu, T., Martonosi, M.: Impala: a middleware system for managing autonomic, parallel
sensor systems. In: PPoPP 2003: Proceedings of the Ninth ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, pp. 107–118. ACM Press, New York
(2003)

7. Srisathapornphat, C., Jaikaeo, C., Shen, C.-C.: Sensor information networking architec-
ture. In: ICPP 2000: Proceedings of the 2000 International Workshop on Parallel Pro-
cessing, p. 23. IEEE Computer Society, Washington, DC (2000)

8. Li, S., Son, S.H., Stankovic, J.A.: Event Detection Services Using Data Service Middle-
ware in Distributed Sensor Networks. In: Zhao, F., Guibas, L.J. (eds.) IPSN 2003. LNCS,
vol. 2634, pp. 502–517. Springer, Heidelberg (2003)

9. Amato, G., Baronti, P., Chessa, S.: Mad-wise: programming and accessing data in a
wireless sensor network. In: Proceedings of the International Conference on Computer
as a tool EUROCON 2005 (2005)

10. Gummadi, R., Kothari, N., Millstein, T., Govindan, R.: Kairos: A macroprogramming
system for wireless sensor networks. In: Proceedings of the Twentieth ACM Symposium
on Operating Systems Principles SOSP 2005 (2005)

11. Aberer, K., Hauswirth, M., Salehi, A.: Global sensor networks. School of Computer and
Communication Sciences Ecole Polytechnique Federale de Lausanne (EPFL), Tech. Rep.
LSIR-REPORT-2006-001 (2006)

12. http://webdoc.siemens.it/CP/SIS/Press/SWORD.htm
13. Schreiber, F.A., Camplani, R., Fortunato, M., Marelli, M., Pacifici, F.: Perla: A data lan-

guage for pervasive systems. In: Proc. PerCom, pp. 282–287 (2008)
14. Perla Home Page, http://perlawsn.sourceforge.net/
15. Bolchini, C., Curino, C.A., Orsi, G., Quintarelli, E., Rossato, R., Schreiber, F.A., Tanca,

L.: And what can context do for data? Communications of ACM 52(11), 136–140 (2009)

http://webdoc.siemens.it/CP/SIS/Press/SWORD.htm
http://perlawsn.sourceforge.net/

18 Extracting Data from WSNs: A Data-Oriented Approach 373

16. Schreiber, F.A., Camplani, R., Fortunato, M., Marelli, M., Rota, G.: Perla: A language
and middleware architecture for data management and integration in pervasive informa-
tion systems. IEEE Transactions on Software Engineering, doi:10.1109/TSE.2011.25

17. Schreiber, F.A., Tanca, L., Camplani, R., Viganó, D.: Towards autonomic pervasive sys-
tems: the PerLa context language. In: Electronic Proceedings of the 6th International
Workshop on Networking Meets Databases (Co-located with SIGMOD 2011), Athens,
pp. 1–7 (2011),
http://research.microsoft.com/en-us/um/people/srikanth/

netdb11/netdb11papers/netdb11-final4.pdf

http://research.microsoft.com/en-us/um/people/srikanth/netdb11/netdb11papers/netdb11-final4.pdf
http://research.microsoft.com/en-us/um/people/srikanth/netdb11/netdb11papers/netdb11-final4.pdf

	Extracting Data from WSNs:A Data-Oriented Approach
	Introduction
	The Vinification Monitoring Process
	PerLa: System Description
	PerLa: Integration in the Winemaking Monitoring Process

	PerLa Language Digest
	Data Definition
	Low Level Queries
	High Level Queries
	Actuation Queries

	Final Remarks
	References

